

Logistic Regression and Decision Trees

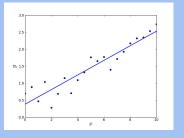
Reminders

- Project Part B was due **yesterday**
- Project Part C will be released tonight
- Mid-Semester Evaluations
 - Helpful whether you really like the class or really hate it
- Get Pollo code JYHDQR

Review: Supervised Learning

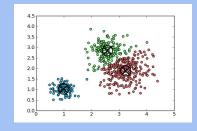
Regression

"How much?" Used for *continuous* predictions



Classification

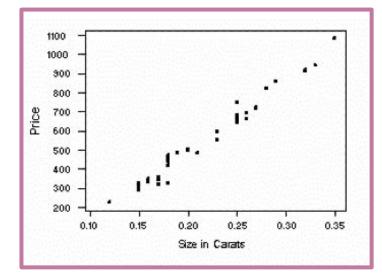
"What kind?" Used for *discrete* predictions



Source

Review: Regression

We want to find a **hypothesis** that explains the behavior of a **continuous** *y*.



$$y = B_0 + B_I x_I + \dots + B_p x_p + \varepsilon$$

Regression for binary outcomes

Regression can be used to **classify**:

• Likelihood of heart disease

- Accept/reject applicants to Cornell Data Science based on affinity to memes

Estimate **likelihood** using regression, convert to **binary** results

Conditional Probability

The probability that an event (A) will occur given that some condition (B) is true

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

The probability that:

- You have a heart disease given you have x blood pressure, you have diabetes, and you are y years old.
- You are accepted to Cornell Data Science given that you spend x hours a day in the meme fb group

Logistic Regression

- 1) Fits a linear relationship between the variables
- 2) Transforms the linear relationship to an estimate function of

the **probability** that the outcome is 1.

Basic formula:

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}$$
(Recognize this?)

$$\ln\left(\frac{P}{1 - P}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Pollo Question

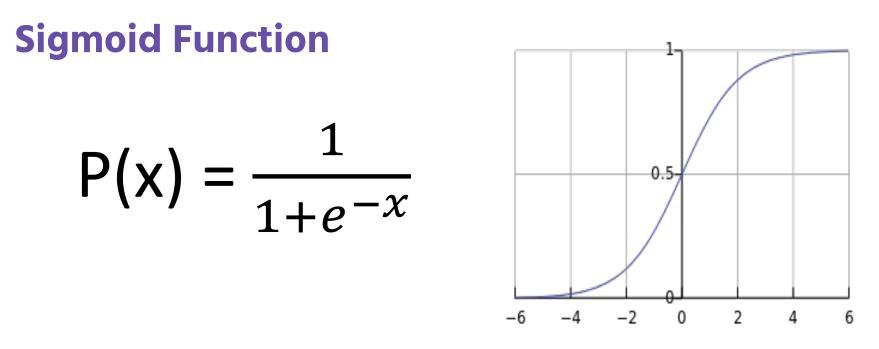
What is the output of the logistic regression function?

- A. Value from $-\infty$ to ∞
- B. Classification
- C. Numerical value from 0 to 1
- D. Binary value

Pollo Question

What is the output of the logistic regression function?

- A. Value from $-\infty$ to ∞
- B. Classification
- C. Numerical value from 0 to 1
- D. Binary value

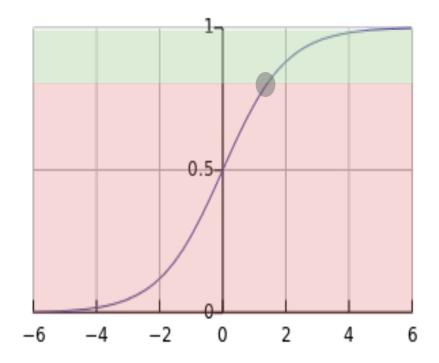


Depending on the regression formula value, P(x) can be between 0 and 1 as x goes from -∞ to ∞.

Threshold

Where between 0 and 1 do we draw the line?

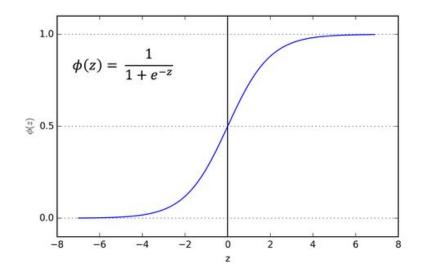
- *P(x)* below threshold: predict 0
- P(x) above threshold: predict 1



Thresholds matter (a lot!)

What happens to the specificity when you have a

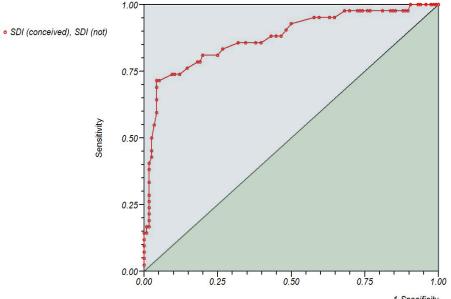
- Low threshold?
 - Sensitivity increases
- High threshold?
 - Specificity increases



ROC Curve

Receiver **O**perating **C**haracteristic

- Visualization of trade-off
- Each point corresponds to a specific threshold value



ROC plot for Sperm Deformity Index and Conception

1-Specificity

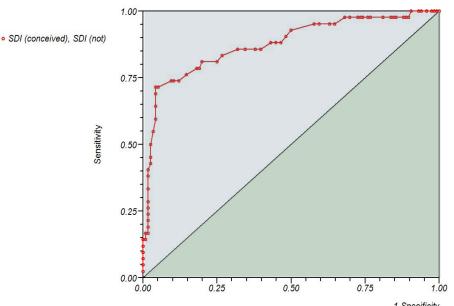
Area Under Curve

 $AUC = \int ROC$ -curve

Always between 0.5 and 1.

Interpretation:

- 0.5: Worst possible model
- 1: Perfect model



ROC plot for Sperm Deformity Index and Conception

1-Specificity

Why Change the Threshold?

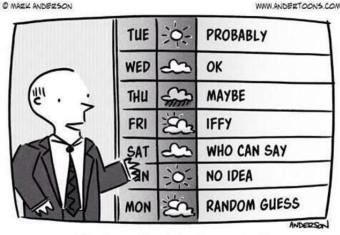
- Want to increase either sensitivity or specificity
- Imbalanced class sizes
 - Having very few of one classification skews the probabilities
 - Can also fix with rebalancing classes
- Just a very bad AUC

Changing Thresholds in the Code

- Sklearn uses a default of 0.5
 - This will be fine a majority of the time
- Have to change the threshold "manually"
 - If the accuracy is low, check the **auc**
 - If high auc, then use **predict_proba**
 - Map the probabilities for each class to the label

Is Logistic Regression Classification?

- Partly classification, partly prediction
- Value in logistic regression is the probabilities
 - Have confidence value for each prediction
 - Can act differently based on



"And now the 7-day forecast ... "

confidence

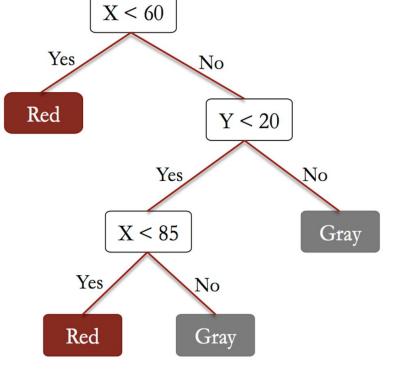
<u>Source</u>

When to Use Regression

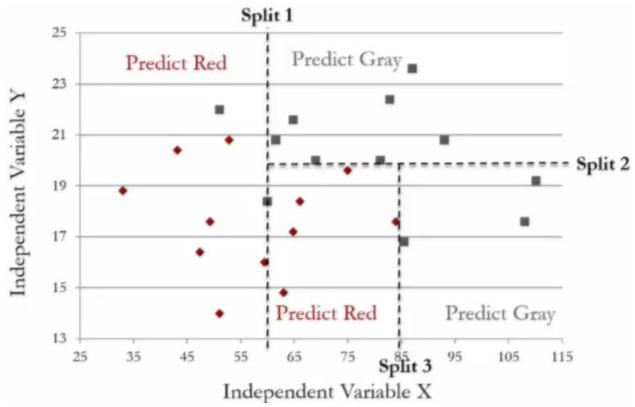
- Works well on (roughly) linearly separable problems
 Remember SVM kernels for non-linearly separable
- Outputs probabilities for outcomes
- Can lack **interpretability**, which is an important part of any useful model

CART (Classification and Regression Trees)

- At each node, split on variables
- Each split minimizes error function
- Very interpretable
- <u>Models a non-linear</u> <u>relationship!</u>



Splitting the data



= red

How to Grow Trees

Greedy Splitting (recursive binary splitting)

- Check all possible splits using a cost function
 - Categorical: try every category
 - Numerical: bin the data
- Pick the one that minimizes the cost
- Recurse until reached the stopping criterion
- Prune to prevent overfitting

How to Grow Trees - Cost Function

- Classification and Regression Trees
 - Can be for either classification or regression
- Cost function for regression is the minimizing sum of squared errors
 - Same function

How to Grow Trees - Cost Function

Gini Impurity

- 1 probability that guess i is correct
- Lower is better

 $1 - \sum_{i} p_{i}^{2}$

Entropy (Information Gain)

- Homogeneity of a group
- Lower is better

 $-\sum_{i} p_i \log p_i$

Gini Impurity Example - Good Split

Healthy?		
Yes	No	
9	1	

- Probability(Yes) = 0.9
- Probability(No) = 0.1
- Impurity

Gini Impurity Example - Bad Split

Healthy?		
Yes	No	
5	5	

- Probability(Yes) = 0.5
- Probability(No) = 0.5
- Impurity

Entropy Example - Good Split

Healthy?		
Yes	No	
9	1	

- Probability(Yes) = 0.9
- Probability(No) = 0.1
- Entropy
 - = -0.9*log 0.9 0.1*log 0.1

Entropy Example - Bad Split

Healthy?		
Yes	No	
5	5	

- Probability(Yes) = 0.5
- Probability(No) = 0.5
- Entropy
 - = -0.5*log 0.5 0.5*log 0.5

How to Grow Trees - Stopping Criterion & Pruning

Used to **control overfitting** of the tree

- Stopping Criterion
 - max_depth, max_leaf_nodes
 - o min_samples_split
 - Minimum number of cases needed for a split
- Pruning
 - Compare overall cost with and without each leaf
 - Not currently supported

How to Grow Trees

- Start at the top of the tree
- Split attributes one by one
 - \circ $\,$ Based on cost function $\,$
- Assign the values to the leaf nodes
- Repeat
- Prune for overfitting

When to Use Decision Trees

- Easy to interpret
 - Can be visualized
- Requires little data preparation
- Can use a lot of features
- Prone to overfitting

Your problem set: Project Part C released

Next week: Unsupervised Learning

See you then!

